Tuesday, April 23, 2013

1304.5859 (Galliano Valent)

On a class of integrable systems with a quartic first integral    [PDF]

Galliano Valent
We generalize, to some extent, the results on integrable geodesic flows on two dimensional manifolds with a quartic first integral in the framework laid down by Selivanova and Hadeler. The local structure is first determined by a direct integration of the differential system which expresses the conservation of the quartic observable and is seen to involve a finite number of parameters. The global structure is studied in some details and leads to a class of models living on the manifolds S^2, H^2 or R^2. As special cases we recover Kovalevskaya's integrable system and a generalization of it due to Goryachev.
View original: http://arxiv.org/abs/1304.5859

No comments:

Post a Comment