Friday, July 20, 2012

1109.1973 (Torsten Asselmeyer-Maluga et al.)

The modification of the energy spectrum of charged particles by exotic
open 4-smoothness via superstring theory
   [PDF]

Torsten Asselmeyer-Maluga, Paweł Gusin, Jerzy Król
In this paper we present a model where the modified Landau-like levels of charged particles in a magnetic field are determined due to the modified smoothness of $\mathbb{R}^{4}$ as underlying structure of the Minkowski spacetime. Then the standard smoothness of $\mathbb{R}^{4}$ is shifted to the exotic $\mathbb{R}_{k}^{4}$, $k=2p$, $p=1,2...$. This is achieved by superstring theory using gravitational backreaction induced from a strong, almost constant magnetic field on standard $\mathbb{R}^{4}$. The exact string background containing flat $\mathbb{R}^{4}$ is replaced consistently by the curved geometry of $SU(2)_{k}\times\mathbb{R}$ as part of the modified exact backgrounds. This corresponds to the change of smoothness on $\mathbb{R}^{4}$ from the standard $\mathbb{R}^{4}$ to some exotic $\mathbb{R}_{k}^{4}$. The calculations of the spectra are using the CFT marginal deformations and Wess-Zumino-Witten (WZW) models. The marginal deformations capture the effects of the magnetic field as well as its gravitational backreactions. The spectra depend on even level $k$ of WZW on SU(2). At the same time the WZ term as element of $H^{3}(SU(2),\mathbb{R})$ determines also the exotic smooth $\mathbb{R}_{k}^{4}$. As the consequence we obtain a non-zero mass-gap emerges in the spectrum induced from the presence of an exotic $\mathbb{R}_{k}^{4}$.
View original: http://arxiv.org/abs/1109.1973

No comments:

Post a Comment