1207.4696 (Nadav Yesha)
Nadav Yesha
In this article we study eigenfunction statistics for a point scatterer (the Laplacian perturbed by a delta-potential) on a three-dimensional flat torus. The eigenfunctions of this operator are the eigenfunctions of the Laplacian which vanish at the scatterer, together with a set of new eigenfunctions (perturbed eigenfunctions). We first show that for a point scatterer on the standard torus all of the perturbed eigenfunctions are uniformly distributed in configuration space. Then we investigate the same problem for a point scatterer on a flat torus with some irrationality conditions, and show uniform distribution in configuration space for almost all of the perturbed eigenfunctions.
View original:
http://arxiv.org/abs/1207.4696
No comments:
Post a Comment