Tuesday, February 28, 2012

1102.5486 (C. Wiesendanger)

I - Conservation of Gravitational Energy-Momentum and Inner
Diffeomorphism Group Gauge Invariance

C. Wiesendanger
Viewing gravitational energy momentum $p_G^\mu$ as equal by observation, but different in essence from inertial energy-momentum $p_I^\mu$ requires two different symmetries to account for their independent conservations - spacetime and inner translation invariance. Gauging the latter a generalization of non-Abelian gauge theories of compact Lie groups is developed resulting in the gauge theory of the non-compact group of volume-preserving diffeomorphisms of an inner Minkowski space ${\bf M}^{\sl 4}$. As usual the gauging requires the introduction of a covariant derivative, a gauge field and a field strength operator. An invariant and minimal gauge field Lagrangian is derived. The classical field dynamics and the conservation laws for the new gauge theory are developed. Finally, the theory's Hamiltonian in the axial gauge is expressed by two times six unconstrained independent canonical variables obeying the usual Poisson brackets and the positivity of the Hamiltonian is related to a condition on the support of the gauge fields.
View original: http://arxiv.org/abs/1102.5486

No comments:

Post a Comment