Tuesday, February 14, 2012

1202.2387 (Scott Cook et al.)

Random billiards with wall temperature and associated Markov chains    [PDF]

Scott Cook, Renato Feres
By a random billiard we mean a billiard system in which the standard specular
reflection rule is replaced with a Markov transition probabilities operator P
that, at each collision of the billiard particle with the boundary of the
billiard domain, gives the probability distribution of the post-collision
velocity for a given pre-collision velocity. A random billiard with
microstructure (RBM) is a random billiard for which P is derived from a choice
of geometric/mechanical structure on the boundary of the billiard domain. RBMs
provide simple and explicit mechanical models of particle-surface interaction
that can incorporate thermal effects and permit a detailed study of
thermostatic action from the perspective of the standard theory of Markov
chains on general state spaces.
We focus on the operator P itself and how it relates to the
mechanical/geometric features of the microstructure, such as mass ratios,
curvatures, and potentials. The main results are as follows: (1) we
characterize the stationary probabilities (equilibrium states) of P and show
how standard equilibrium distributions studied in classical statistical
mechanics, such as the Maxwell-Boltzmann distribution and the Knudsen cosine
law, arise naturally as generalized invariant billiard measures; (2) we obtain
some basic functional theoretic properties of P. Under very general conditions,
we show that P is a self-adjoint operator of norm 1 on an appropriate Hilbert
space. In a simple but illustrative example, we show that P is a compact
(Hilbert-Schmidt) operator. This leads to the issue of relating the spectrum of
eigenvalues of P to the features of the microstructure;(3) we explore the
latter issue both analytically and numerically in a few representative
examples;(4) we present a general algorithm for simulating these Markov chains
based on a geometric description of the invariant volumes of classical
statistical mechanics.
View original: http://arxiv.org/abs/1202.2387

No comments:

Post a Comment