Friday, December 7, 2012

1211.5992 (Guowu Meng)

The Poisson Realization of $\mathfrak{so}(2, 2k+2)$ on Magnetic Leaves    [PDF]

Guowu Meng
Let ${\mathbb R}^{2k+1}_*={\mathbb R}^{2k+1}\setminus\{\vec 0\}$ ($k\ge 1$) and $\pi$: ${\mathbb R}^{2k+1}_*\to \mathrm{S}^{2k}$ be the map sending $\vec r\in {\mathbb R}^{2k+1}_*$ to ${\vec r\over |\vec r|}\in \mathrm{S}^{2k}$. Denote by $P\to {\mathbb R}^{2k+1}_*$ the pullback by $\pi$ of the canonical principal $\mathrm{SO}(2k)$-bundle $\mathrm{SO}(2k+1)\to \mathrm{S}^{2k} $. Let $E_\sharp\to {\mathbb R}^{2k+1}_*$ be the associated co-adjoint bundle and $E^\sharp\to T^*{\mathbb R}^{2k+1}_*$ be the pullback bundle under projection map $T^*{\mathbb R}^{2k+1}_*\to {\mathbb R}^{2k+1}_*$. The canonical connection on $\mathrm{SO}(2k+1)\to \mathrm{S}^{2k} $ turns $E^\sharp$ into a Poisson manifold. The main result here is that the real Lie algebra $\mathfrak{so}(2, 2k+2)$ can be realized as a Lie subalgebra of the Poisson algebra $(C^\infty(\mathcal O^\sharp), \{, \})$, where $\mathcal O^\sharp$ is a symplectic leave of $E^\sharp$ of special kind. Consequently, in view of the earlier result of the author, an extension of the classical MICZ Kepler problems to dimension $2k+1$ is obtained. The hamiltonian, the angular momentum, the Lenz vector and the equation of motion for this extension are all explicitly worked out.
View original: http://arxiv.org/abs/1211.5992

No comments:

Post a Comment