Tuesday, February 12, 2013

1302.2109 (Dong Eui Chang et al.)

On the Damping-Induced Self-Recovery Phenomenon in Mechanical Systems
with Several Unactuated Cyclic Variables

Dong Eui Chang, Soo Jeon
The damping-induced self-recovery phenomenon refers to the fundamental property of underactuated mechanical systems: if an unactuated cyclic variable is under a viscous damping-like force and the system starts from rest, then the cyclic variable will always move back to its initial condition as the actuated variables come to stop. The regular momentum conservation phenomenon can be viewed as the limit of the damping-induced self-recovery phenomenon in the sense that the self-recovery phenomenon disappears as the damping goes to zero. This paper generalizes the past result on damping-induced self-recovery for the case of a single unactuated cyclic variable to the case of multiple unactuated cyclic variables. We characterize a class of external forces that induce new conserved quantities, which we call the damping-induced momenta. The damping-induced momenta yield first-order asymptotically stable dynamics for the unactuated cyclic variables under some conditions, thereby inducing the self-recovery phenomenon. It is also shown that the viscous damping-like forces impose bounds on the range of trajectories of the unactuated cyclic variables. Two examples are presented to demonstrate the analytical discoveries: the planar pendulum with gimbal actuators and the three-link planar manipulator on a horizontal plane.
View original: http://arxiv.org/abs/1302.2109

No comments:

Post a Comment