Friday, May 24, 2013

1305.5323 (Alessandro Giuliani et al.)

Realization of stripes and slabs in two and three dimensions    [PDF]

Alessandro Giuliani, Elliott H. Lieb, Robert Seiringer
We consider Ising models in two and three dimensions with nearest neighbor ferromagnetic interactions and long range, power law decaying, antiferromagnetic interactions. If the strength of the ferromagnetic coupling J is larger than a critical value J_c, then the ground state is homogeneous and ferromagnetic. As the critical value is approached from smaller values of J, it is believed that the ground state consists of a periodic array of stripes (d=2) or slabs (d=3), all of the same size and alternating magnetization. Here we prove rigorously that the ground state energy per site converges to that of the optimal periodic striped/slabbed state, in the limit that J tends to the ferromagnetic transition point. While this theorem does not prove rigorously that the ground state is precisely striped/slabbed, it does prove that in any suitably large box the ground state is striped/slabbed with high probability.
View original:

No comments:

Post a Comment