Wednesday, May 9, 2012

1106.4785 (Christopher J. Fewster et al.)

Dynamical locality and covariance: What makes a physical theory the same
in all spacetimes?

Christopher J. Fewster, Rainer Verch
The question of what it means for a theory to describe the same physics on all spacetimes (SPASs) is discussed. As there may be many answers to this question, we isolate a necessary condition, the SPASs property, that should be satisfied by any reasonable notion of SPASs. This requires that if two theories conform to a common notion of SPASs, with one a subtheory of the other, and are isomorphic in some particular spacetime, then they should be isomorphic in all globally hyperbolic spacetimes (of given dimension). The SPASs property is formulated in a functorial setting broad enough to describe general physical theories describing processes in spacetime, subject to very minimal assumptions. By explicit constructions, the full class of locally covariant theories is shown not to satisfy the SPASs property, establishing that there is no notion of SPASs encompassing all such theories. It is also shown that all locally covariant theories obeying the time-slice property possess two local substructures, one kinematical (obtained directly from the functorial structure) and the other dynamical (obtained from a natural form of dynamics, termed relative Cauchy evolution). The covariance properties of relative Cauchy evolution and the kinematic and dynamical substructures are analyzed in detail. Calling local covariant theories dynamically local if their kinematical and dynamical local substructures coincide, it is shown that the class of dynamically local theories fulfills the SPASs property. As an application in quantum field theory, we give a model independent proof of the impossibility of making a covariant choice of preferred state in all spacetimes, for theories obeying dynamical locality together with typical assumptions.
View original:

No comments:

Post a Comment