Monday, April 22, 2013

1304.5492 (E. M. A. Pinto et al.)

Quasitriangular Hopf algebras, braid groups and quantum entanglement    [PDF]

E. M. A. Pinto, M. A. S. Trindade, J. D. M. Vianna
The aim of the paper is to provide an method to obtain representations of the braid group through a set of quasitriangular Hopf algebras. In particular, these algebras may be derived from group algebras of cyclic groups with additional algebraic structures. In this context, by using the flip operator, it is possible to construct R-matrices that can be regarded as quantum logic gates capable of preserving quantum entanglement.
View original:

No comments:

Post a Comment