Wednesday, February 13, 2013

1105.3703 (Norbert Bodendorfer et al.)

New Variables for Classical and Quantum Gravity in all Dimensions I.
Hamiltonian Analysis

Norbert Bodendorfer, Thomas Thiemann, Andreas Thurn
Loop Quantum Gravity heavily relies on a connection formulation of General Relativity such that 1. the connection Poisson commutes with itself and 2. the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D+1 = 4 spacetime dimensions. However, interesting String theories and Supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional Supergravity loop quantisations at one's disposal in order to compare these approaches. In this series of papers, we take first steps towards this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG, which does not require the time gauge and which generalises to any dimension D > 1. The result is a Yang-Mills theory phase space subject to Gauss, spatial diffeomorphism and Hamiltonian constraint as well as one additional constraint, called the simplicity constraint. The structure group can be chosen to be SO(1,D) or SO(D+1) and the latter choice is preferred for purposes of quantisation.
View original:

No comments:

Post a Comment