Monday, January 14, 2013

1301.2502 (Marek Bozejko et al.)

Generalized Gaussian processes and relations with random matrices and
positive definite functions on permutation groups

Marek Bozejko, Wojciech Bozejko
The main purpose of this paper of the paper is an explicite construction of generalized Gaussian process with function $t_b(V)=b^{H(V)}$, where $H(V)=n-h(V)$, $h(V)$ is the number of singletons in a pair-partition $V \in \st{P}_2(2n)$. This gives another proof of Theorem of A. Buchholtz \cite{Buch} that $t_b$ is positive definite function on the set of all pair-partitions. Some new combinatorial formulas are also presented. Connections with free additive convolutions probability measure on $\mathbb{R}$ are also done. Also new positive definite functions on permutations are presented and also it is proved that the function $H$ is norm (on the group $S(\infty)=\bigcup S(n)$.
View original:

No comments:

Post a Comment